An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization

نویسندگان

  • Pierre Alquier
  • Benjamin Guedj
چکیده

The aim of this paper is to provide some theoretical understanding of Bayesian non-negative matrix factorization methods. We derive an oracle inequality for a quasi-Bayesian estimator. This result holds for a very general class of prior distributions and shows how the prior affects the rate of convergence. We illustrate our theoretical results with a short numerical study along with a discussion on existing implementations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linearly constrained Bayesian matrix factorization for blind source separation

We present a general Bayesian approach to probabilistic matrix factorization subject to linear constraints. The approach is based on a Gaussian observation model and Gaussian priors with bilinear equality and inequality constraints. We present an efficient Markov chain Monte Carlo inference procedure based on Gibbs sampling. Special cases of the proposed model are Bayesian formulations of nonne...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Soft Partitioning in Networks via Bayesian Non-negative Matrix Factorization

Identifying overlapping communities in networks is a challenging task. In this work we present a novel approach to community detection that utilizes the Bayesian non-negative matrix factorization (NMF) model to extract overlapping modules from a network. The scheme has the advantage of computational efficiency, soft community membership and an intuitive foundation. We present the performance of...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018